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Personal introduction

This report is the conclusion of a 1.5-year lasting cooperation between the University of
Twente and Saint Petersburg State Polytechnical University – consisting of my internship
and master thesis.
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with the consequences of earlier choices. Because the goals of the software became clearer
during the research process, sometimes the architecture had to be changed to suit the
new goals.
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Summary

TRIZ function modeling is an analysis method applied by engineers to describe the
component relations in a technical system in terms of functions. Such function models
are a basis for the product improvement process based on the TRIZ theory of innovation.
Since product improvement implies that a product already exists, usually CAD models
of the product are already available. In ongoing research, software has been developed
to automate the creation of function models from SolidWorks assemblies and to assist
engineers in working with them, to make use of this situation.

By means of using functions, it is expressed what components do and not how they
do it. This abstraction removes mental inertia, thereby enabling engineers to think of
new solutions. Because the functions are qualitative and because they are expressed in
natural language, they are relatively imprecise. On the other hand, mathematical models
can describe technical systems in a much more detailed way, but it is inconvenient to
use separate software for this. Furthermore, using static function models to describe a
dynamic system with changing functions or a changing structure is quite difficult.

To solve these inconveniences, a workflow was developed to integrate CAD software,
TRIZ, the existing function modeling software and Modelica. Modelica is a mathematical
modeling language that can be used in a similar way to Simulink. Modelica was chosen
because of its advantages over Simulink such as better support for modeling of physical
systems and support for acausality. To simplify working with function models of changing
systems, the concept Dynamic Function Modeling was introduced. This concept consists
of function models that can change their structure depending on time.

During this project, the integration between the existing function modeling software
and Modelica was implemented. For the software user this integration resulted in the
possibility of editing Modelica code from the function model diagram and being as-
sisted in writing this code, performing simulation of the internal Modelica model and
having visualization of the simulation results visually linked to the components of the
function model diagram. The Dynamic Function Modeling concept is implemented by
automatically changing the structure of the function model depending on the values of
the variables, resulting from the simulations.

The integration possibilities are demonstrated by means of a case study, in which a
function model and Modelica model of an RC-car are made and simulated using the
developed software. This case study shows the strengths of the integration, but also the
points that need improvement during following projects.

Besides the software integration of function modeling and Modelica, the function mod-
eling software was extended with more assistance features.

iv



Samenvatting

TRIZ function modeling is een analysemethode, toegepast door engineers, om de relaties
tussen componenten van een technisch systeem te omschrijven m.b.v. functies. Zulke
function models vormen een basis voor het productverbeteringsproces gebaseerd op de
innovatietheorie TRIZ. Aangezien productverbetering impliceert dat er al een bestaand
product is, zijn er meestal al CAD modellen beschikbaar. Om van dit gegeven gebruik te
maken is er tijdens een lopend onderzoek software ontwikkeld, die het maken van function
models op basis van SolidWorks assemblies automatiseert en engineers assisteert in het
werken met deze function models.

Door gebruik te maken van functies, wordt de nadruk gelegd op wat componenten doen
en niet hoe ze dat doen. Deze abstractie voorkomt mental inertia, waardoor engineers
makkelijker aan nieuwe oplossingen kunnen denken. Omdat functies kwalitatief zijn en
omdat ze in natuurlijke taal uitgedrukt worden, zijn ze niet heel exact. Aan de andere
kant kunnen technische systemen veel gedetailleerder beschreven worden met wiskundige
modellen, maar is het ongemakkelijk om hiervoor aparte software te gebruiken. Verder
is het lastig om statische function models te gebruiken om dynamische systemen met
veranderende functies of een veranderende structuur te beschrijven.

Om deze tekortkomingen aan te pakken is een workflow ontwikkeld om CAD software,
TRIZ, de bestaande function modeling software en Modelica te integreren. Modelica is
een wiskundige modelleertaal die op een soortgelijke manier als Simulink gebruikt kan
worden. Modelica is gekozen vanwege zijn voordelen t.o.v. Simulink zoals betere onder-
steuning voor het modelleren van fysieke systemen en ondersteuning voor acausaliteit.
Om het werken met function models van veranderende systemen makkelijker te maken is
het concept Dynamic Function Modeling gëıntroduceerd. Dit concept beschrijft function
models waarvan de structuur afhankelijk van de tijd kan veranderen.

Tijdens dit project is de integratie van de bestaande function modeling-software en
Modelica gëımplementeerd. Voor de gebruiker van de software betekent deze integratie
de mogelijkheid tot het (geassisteerd) bewerken van Modelica-code vanuit het function
model-diagram, het simuleren van deze code en het tonen van de simulatieresultaten,
visueel gelinkt aan de componenten van het function model-diagram. Het Dynamic
Function Modeling-concept is gëımplementeerd door het automatisch veranderen van de
function model-structuur afhankelijk van de simulatieresultaten.

De mogelijkheden die de integratie biedt worden gedemonstreerd door middel van een
case study, waarin een function model en een Modelica-model van een RC-auto gemaakt
en gesimuleerd worden met de ontwikkelde software. Deze case study laat de sterke
kanten van de integratie zien, maar ook de verbeterpunten die aangepakt moeten worden
tijdens volgende projecten.

Naast de software-integratie van function modeling en Modelica is de function modeling-
software uitgebreid met meer assistentiemogelijkheden.
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1 Introduction

This chapter explains the situation at the beginning of this project, the goals for this
project, how the research will be performed and how this report is structured.

1.1 Project background

The daily job of product developers and engineers consists of various tasks. Strategy
decisions, cooperation tasks, product design, product analysis, simulation are some ex-
amples of such tasks. When the computer programs – that are supporting the engineer
for these tasks – are not integrated with each other the work of the engineer will be
harder and more prone to mistakes. This is because, when there is no integration, the
engineer has to create separate models of the same product. Besides more needed effort
to perform the same work, mistakes can be made in keeping the different models the
same.

When working in a team with people from different fields of profession (multi-disciplinary
development), they all have their preferred tools, methods, their own knowledge and their
own software. Also, they have their own thinking inertia based on their professional
knowledge and experience. To make these people cooperate well and to remove their
thinking inertia, a common innovation platform that removes thinking inertia is needed.
As explained by Wits et al. in [48], TRIZ function modeling (FM) is a good method for
this. TRIZ is, in short, a group of methods to improve creativity in a systematic way.
FM is one of these methods. It is used to analyze technical systems by expressing the
relations between components of these systems in terms of functions. This way, it is
emphasized what components do and not how they do this.

As reasoned by Chechurin et al. in [12], FM can sometimes lack precision in its de-
scription of technical systems. After all, it is a qualitative modeling technique based on
natural language. Mathematical modeling, on the other hand, can be very precise but
also requires expertise. Also, currently there exists no FM software that provides sup-
port for mathematical modeling or that provides integration with mathematical modeling
software like Simulink or Modelica.

This project is part of an ongoing research striving to support engineers in working with
FMs. Two papers have been published about software that automates the creation of FMs
from SolidWorks assemblies [6] and performs function ranking and trimming [13]. The
prototype FM software that was developed for this papers will be called ModelEvolution.
This software will be taken as a basis for this project.
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1 Introduction

1.2 Research goal

In the situation described in the previous section, there are several tools available to the
engineer: FM, other TRIZ methods, CAD software and mathematical modeling software.
Mathematical modeling support could be a useful addition to FM software. However,
there is currently no FM software that provides integration with mathematical software.
Also there is no literature that describes how to implement such an integration.

Therefore, the goal of this project is to find out the interaction possibilities between the
mentioned tools first. When these possibilities are known, they need to be implemented.
This is of course needed to be able to use them, but also to verify whether or not they
actually ease the engineers’ work.

1.3 Research approach

First the components of the product development ecosystem, that were to be included
in the research, are listed. These components are CAD software, Function Modeling,
Modelica, Optimization and TRIZ. Modelica is the software that is used to provide math-
ematical support. Optimization of the mathematical models is presented as a separate
step in the workflow.

Secondly, a thorough literature study into the tools, into similar software and the into
existing interactions between the tools is done. After that, ideas for new interactions are
generated. This is done by looking at the data that each tool requires, by looking at the
data that each tool provides and by matching these data afterwards.

The possible new interactions and the existing interactions between the tools are drawn
together in a workflow diagram (figure 1.1) – a scheme that shows the information flows
between the tools.

During this project, the interaction between FM and mathematical is chosen to be
implemented in the ModelEvolution prototype.

This project focuses on software development. A case study consisting of the modeling
and simulation of an RC-car is done to demonstrate the implemented functionality and
to verify the software’s capabilities of working with larger and more detailed models. A
user survey amongst a large group of users can be done in a future project.

1.4 Research outline

First a literature study into the most important topics for this project is presented as a
broad introduction to the project’s background in chapters 2, 3 and 4. These chapters
respectively discuss TRIZ, Mathematical modeling and Software integration. Function
Modeling is discussed as a part of the chapter on TRIZ in section 2.1. Details on Modelica
are given as a part of chapter 3 in section 3.4.

In chapter 5 the workflow of figure 1.1 is discussed. The literature study into the
existing principles, integrations and similar software is presented here together with the
new integration ideas.
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1.4 Research outline

The outlines of the software development, done for this project, are discussed in chap-
ter 6. This chapter also demonstrates the workings of the software with a discussion of its
(new) features. More technical details on the implementation are provided in appendix B.

The screenshots describing the working of the software are bundled with the screenshots
of the case study in chapter 7. This is done to have them all in a central place, clearly
showing the workflow steps.

The case study concerning the RC-car to demonstrate the software’s capabilities is
presented in chapter 8.

The main part of the report ends with the conclusions and recommendations in chap-
ter 9.

Initial CAD
model

Modelica model

Function
Modeling Optimization

TRIZ theory

Simulation
results

Changes

Target Object
selection

Improvements

Main Parameter of Value

Root conflict detection

Design guidelines & parametric model updates

Figure 1.1: Overall workflow

3





2 TRIZ – Theory of Inventive Problem
Solving

TRIZ (Russian abbreviation of Theory of Inventive Problem Solving) is a group of meth-
ods that offer a systematic approach for the improvement of technical systems. It was
developed by Genrich Altshuller [1] and a group of scientists around him. Their first
ideas were presented in a Russian journal on psychology [2] and afterwards these ideas
were developed by a growing group of people.

Salamatov provides a book [39] about TRIZ that gives a lot of practical examples from
history, besides a broad discussion of the theory.

The goal of TRIZ is to make a technical system achieve ideality [39, p. 112-114]. The
better the main function of a system is performed and the less mass, volume and energy
are used to perform this function, the more ideal a system is. Souchkov defines the
ideality of a system in [41] as its net performance divided by its costs:

ideality =
useful effects − negative effects

costs
(2.1)

Generally spoken, the problem solving using TRIZ is done as shown in figure 2.1.
First the existing technical system is analyzed. In this phase, one searches for technical
contradictions [39, p. 69]. One of the contradictions is selected to work on and an abstract
version of the contradiction is composed. TRIZ provides a collection of abstract principles
to solve such abstract contradictions. These principles are derived from other inventions
providing solutions for similar problems. One way of selecting suitable principles for
solving the selected contradiction, is by using the Contradiction Matrix [3]. Using the
selected principles, solution candidates can be generated for the initial problem.

Problem

Abstract
problem

Abstract
solution

Specific
solution(s)

Specific
solution(s)

Specific
solution(s)

Problem abstraction

Solution principle
selection

Concept generation

Usual
problem solution

route

Figure 2.1: General TRIZ problem solving steps

There are two reasons for following this abstraction route instead of the usual problem
solving route. The first one is to distract the user from his own solution space. Probably
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2 TRIZ – Theory of Inventive Problem Solving

he has experience in his own field, and probably he has already thought about the usual
solutions from this field. The inclination to stick to the usual solutions is called mental
inertia and the goal is to remove this. The other reason is to make similarities with
problems and solutions from other fields visible to the user.

2.1 Function modeling in TRIZ

Function modeling [14] [9], also known as function analysis [41, p. 69-74], is one of the
methods from TRIZ to describe the relations between a system’s components. It is not
part of the ’original’ TRIZ, but it was added later. It can be used to analyze an existing
system with a focus on the functions that the components perform and the parameters
that are changed. These functions are usually described as object-verb-subject-triples.
Gerasimov et al. [19] give a definition of a function and related terms. Litvin et al. [32]
restate a part of these definitions in English and propose to extend Function Modeling
with spatio-temporal parameters.

The goal of this method is to make an abstraction of the system: the actual imple-
mentation of these interactions is less important. For example, in function modeling it
does not matter if a component is rotated by an electric motor, a combustion motor or
a human hand. The important part is that the component is rotated: the goal of this
abstraction is to remove mental inertia.

According to Souchkov [41, p. 73-74], the problems found during function analysis
should first be ranked according to their importance using comparative ranking. The
problems can then be solved using the Inventive Standards (after transforming the prob-
lem to a Substance-Field model). Souchkov also mentions ARIZ or Trends of System
Evolution as ways to solve the problems.

Litvin et al. [32] mention "Trimming, Feature Transfer, Super Effect Analysis, and
Function Oriented Search" as methods that can be performed on Function Models to
increase the ideality of the described systems. This is not done by solving problems /
contradictions per se, but they can increase the amount of positive effects performed
by the system (Super-Effect Analysis [24] [18]) or reduce the amount of components to
perform the same functionality (Trimming [13] [25] [19]).

Because functions are qualitative (they say what a component does and not how a
component does it) and because they are defined using natural language, ambiguity or
invalid functions can slip into function models [9]. This is a shortcoming of FM that can
be solved by training of the users or by software assistance helping them to formulate
their functions better.

2.1.1 Function model creation

The process of creating a FM usually starts with creating an interaction matrix – a table
in which all system components are listed and where interacting components are marked.
After the creation of the interaction matrix, the interactions are listed and extended with
function descriptions. Additional details, like whether or not a function is harmful, can
be added too. Formally spoken, this list of components and their functions is a FM

6



2.1 Function modeling in TRIZ

already. However, this data is usually presented in diagram form to be more insightful.
Figures of this process are shown in appendix A.

Engineers can select one of the components of the system to be a target component.
This component is the component that the system performs its useful function on. For
example, the target component of the system "knife and bread" would be bread since
the knife cuts the bread. In FMs the target component is usually marked yellow (see
figure 2.2).

2.1.2 Multi-layer Function Modeling

As products become more complex, engineers usually group their components in sub-
assemblies that together form the total assembly (even larger products can have sub-
sub-assemblies, etc). This way, the components form a hierarchical tree. To reflect this
hierarchy, every (sub-)sub-assembly can be represented in its own FM and can be put as
a black box in the FM of the level above it (see figure 2.2).

When working with such multi-layer FMs without sophisticated tools, it is quite hard
to keep an overview of the system, especially when there are interactions across the
various hierarchy levels. Figure 2.3 is an example of how working with multi-layer FMs
can be made easier: the system hierarchy is presented as a tree in the left-hand part of
the program window. Each hierarchy level can be clicked to show the FM of that level.
Furthermore, all FM components can be double-clicked (like in Simulink) to show the
FM below them. Components outside the currently shown FM (like in different branches
of the component tree or in different hierarchy levels), that are connected with a function
to a component of the currently shown FM, are shown dashed. For the sake of legibility,
this type of functions is not shown in figure 2.2.

2.1.3 Dynamic Function Modeling

Technical systems are usually dynamic systems - systems that change over time. Because
of this, the system can be in different states. Between these states, the structure of the
system can change or functions can change.

When the differences between the states are small, the engineer can try to combine the
various states in one FM. However, as the differences become larger, it becomes harder
to combine the FMs of different states and consequently separate FMs are required. This
makes it harder to keep an overview of the system in all states. The various approaches
to handle this problem that are currently used are discussed in [12].

These approaches each have their shortcomings and therefore Dynamic FM was intro-
duced – a transient FM that is defined as a function of time. One could perceive this as
a movie where the frames are FMs of the system’s states.
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Figure 2.2: Multi-layer function model

Figure 2.3: Multi-layer function model of figure 2.2 in ModelEvolution
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2.2 TRIZ and Computer Aided Innovation software

2.2 TRIZ and Computer Aided Innovation software

Specialized software has been developed to assist engineers in applying TRIZ. The con-
cept TRIZ software can be divided in two groups: software that helps engineers to apply
a principle developed using TRIZ and software that guides in the process of applying
TRIZ.

The software presented by Cardillo et al. in [10] is an example of the first group. Their
software performs Topology Optimization, based on TRIZ principles, to solve geometrical
contradictions in CAD software.

The second group is also referred to as Computer Aided Innovation (CAI) software
(although not all CAI software is always related to TRIZ). The software assists engineers
in their innovation-related tasks. In [23], Hüsig and Kohn distinguish three groups of CAI
software: Strategy Management, Idea Management and Patent Management. Software
covering more than two categories are labeled as Holistic Solutions. Two examples of
such software are Invention Machine Goldfire [20] and TRIZacquisition [46].

In [23] a broad overview of CAI software, its advantages and a market overview are
given. Two publications more specifically targeted at TRIZ are written by Cascini [11]
and Ikovenko [25].

The software developed during the research for this thesis is based on the software
resulting from the research for [6] and [13]. These publications describe the integration
of CAD software and FM. Furthermore they explain how engineers can be assisted by
software when performing innovation tasks using FM diagrams.
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3 Mathematical modeling and its support
by software

3.1 Introduction

This chapter will discuss mathematical modeling. First there will be explained what it is
and what it can be used for. After that, different software types that can help engineers
with mathematical modeling are discussed and some examples of each of these software
types are given. Finally, the Modelica language and its implementations are discussed
because this software will be used for the research of this thesis.

3.2 Mathematical modeling (of dynamic systems)

Mathematical modeling is a technique to describe (some part of) the reality using a
system of equations. Bender [7] defines it as "an abstract, simplified, mathematical
construct related to a part of reality and created for a particular purpose". The mathe-
matical nature yields that the results will be exact, but not per se precise - the validity
of the outcomes depend on the assumptions made during the modeling and the input
data.

The purposes of such modeling can be the analysis of a current situation, simulation (for
example to predict experiment outcomes without spending money on real experiments)
and optimization. Optimization can be either done analytically or by performing a set
of simulations using different parameters and selecting the best parameters afterwards.

A special type of mathematical models are models of dynamic systems, where their
state can described as a function of time. Such systems usually consist of differential
equations which need to be integrated over time to simulate them. Mathematical software
can perform this function.

3.3 Mathematical modeling software

Various software packages exist that provide support for mathematical modeling. Gener-
ally spoken, there are two types of mathematical software (besides spreadsheet software).
First, there is software using a procedural language: it performs calculations step by step
following the input of the user or following a script. Examples of this software type are
Matlab, Octave, Maple and Mathematica.

The other type of software is software where the user can make a model of a situation,
and have the software consider the equations of the model as a whole during the simu-
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lation phase. Examples of this software type are Simulink [40] and various Modelica [5]
implementations. For this software type, the order of equations does in the model files
does not matter.

When comparing these two types of software, the second type is usually of a higher
abstraction level. One reason for this is that for the first software type users have
to reorder equations themselves. Another reason is that they can also use commands
between the equations - for example to change some values between the calculations.

Simulink and Modelica both provide a graphical interface for building models as block
diagrams. Using these diagrams, the user does not even need to directly deal with
equations anymore – the software can translate the graphical block representation to a
system of equations.

The simulation of the models is done by numerical integration of the differential equa-
tions that make up the model. Both Simulink and Modelica implementations provide
several solvers that perform this task.

3.4 Modelica

Modelica [5] is a standardized mathematical modeling language that can describe the
dynamics of technical systems. Although the models themselves are text-based, they
can be represented by block diagrams like Simulink [40]. Another similarity is that both
systems can have models that are built up from multiple layers: a model of a DC-motor
can be built from electrical components. This motor model can then be re-used as a black
box in other models where the user does not need to worry much about the workings of
this black box (except for setting some parameters).

Although there are similarities between Simulink and Modelica, there are also dif-
ferences. First, Modelica is not a program, but a language. Several implementations
(computer programs) are available that provide support for this language, like Dymola,
OpenModelica, MathModelica, CATIA and others. Each of them provide access to the
Modelica Standard Library [5, p. 213], consisting of basic models that are provided by the
Modelica Association. This makes sure that not too advanced models will work across
the various implementations. Besides this, some of the implementations also provide
their own additions to add value for their users – for example Dymola provides advanced
car modeling libraries like used in [16].

The second difference is that – as a part of the Modelica Standard Library – Modelica
provides support for physical units: variables not only have a value, but can also have
a unit. This information can be used for, amongst others, unit checking [4] (to correct
mistakes) and unit conversion.

Another difference is the support for acausality provided by Modelica. In Simulink,
connections between models are visualized by arrows. These arrows have a direction,
clearly showing the input and output of the blocks that the arrows connect. In Modelica,
most models have connections without such a direction, making the relations acausal.
This principle makes it easier to model physical systems. For example, a motor does not
only deliver torque to other components, but the delivered torque also works upon the
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3.4 Modelica

motor as a reaction torque. In Modelica this is possible using only one connection, while
modeling it in Simulink would require a feedback loop.

Because of the advantages over Simulink and other mathematical software (support
for modeling of physical systems, acausality and block diagrams), Modelica is chosen to
be used for the mathematical modeling support. Out of the various available Modelica
implementations, OpenModelica was chosen because of its free availability (in contrast
to commercial implementations, for which licenses could not easily be obtained) and
because of its possibility to be integrated via CORBA. CORBA is a technology that
allows different computer programs to communicate with each other. The usage of this
technology is explained in section 6.3.3.
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4 Advantages of software integration

The goal of this project is to achieve integration between several software components.
There are several reasons for applying software integration. Hüsig and Kohn explain
that it can enhance efficiency [23, p. 553] by removing the need for duplicated work and
by preventing mistakes. They also state that software that aggregates, structures and
visualizes data enhances effectiveness by lowering complexity and increasing clarity. This
can be achieved by using the data from the various integration components.

Effectiveness can also be increased by streamlining the users’ workflow. When people
have to switch less often between programs, or when they do not have to switch at all
between programs anymore, they will lose less time.

Integration can be a starting point for automation tasks. By combining data or reusing
data, some tasks can be automated. Examples of this are given in [6] (like interaction
detection and function proposing) and [13] (function ranking).

Integration can also stimulate the cooperation between various people. People that
used different programs before, targeted at their own job, can now use the same software
(collection) and can always have access to the latest version of the data.

An well-known example of software integration, that is used in product development, is
Product Lifecycle Management (PLM) software. It is a term for software that engineering
teams can use to create and share all sorts of data, related to the product and its parts, in
a central place. Such software can be Computer Aided Design (CAD) software to design
the parts, but also Computer Aided Engineering (CAE) software to perform analyses and
Computer Aided Manufacturing (CAM) software to control the machines are examples
of PLM software. All these types of software work together to perform the tasks needed
during product development.
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5 Workflow of integrated components

5.1 Overview

In figure 5.1 the workflow can be seen. The CAD software is placed on the left-hand side
since the product improvement process is assumed to start with a CAD model. From
here a FM and a Modelica model are generated. This is discussed in sections 5.2 and 5.3.

Some literature and ideas exist about going from FM to CAD. They are presented in
section 5.4, but since there is no implementation available the arrow is drawn dashed in
the workflow diagram.

The work done for this thesis focuses on the interaction between FM and Modelica,
which is described in sections 5.5 and 5.6. Changes made in the FM structure are
reflected in the Modelica model. Besides that, Modelica code can be edited through the
components of the FM. The results from the Modelica model simulation can be used
and shown in several ways in the FM diagram. The possibility of generating FMs from
Modelica is mentioned in section 5.6, but is not investigated further.

The Modelica model can be optimized to find the design parameters that make the
system perform best. This process is described in section 5.7. The users can be assisted
in composing an optimization objective by information from FM and TRIZ, as explained
in section 5.7.1.

TRIZ theory can help improving CAD models and FMs, both direct (through soft-
ware assistance) or via a thinking process performed by engineers. This is discussed in
chapter 2 and this will not be repeated here.

The optimization results can be used for improving the initial CAD model, as shown in
section 5.7.2. The optimization process can also be used to find conflicting optimization
interests, called contradictions, which can be solved by TRIZ (see section 5.7.3).

5.2 CAD to Function Modeling

Solutions for the CAD to Function Modeling part have been published in [6] and [13].
The research done for these publications led the development of ModelEvolution. The
software first extracts the component hierarchy in a CAD assembly to create the compo-
nent tree for a multi-layer FM (as explained before in section 2.1.2). After that it checks
the interactions between components and pre-fills an Interaction Matrix that the user
can complete. Then the user is guided through the process of selecting the right func-
tion for each interaction that was checked in the Interaction Matrix based on component
names, interaction type and component metadata. Furthermore ModelEvolution is able
to respond to events in the CAD assembly and in the FM, and it can provide the user
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5 Workflow of integrated components

Initial CAD
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Modelica model

Function
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TRIZ theory

Simulation
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Design guidelines & parametric model updates

Figure 5.1: Overall workflow (figure 1.1 repeated). The thick blue arrows show the
interactions that are worked on during this project. The dashed black arrows
stand for interactions that are not implemented yet and that are not worked
on during this project. Available interactions are shown using normal black
arrows.
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5.3 CAD to Modelica

with more information about functions and principles that can be used to perform these
functions.

ModelEvolution is used as a basis for this thesis research.

5.3 CAD to Modelica

The conversion of CAD models to Modelica models has been researched by multiple peo-
ple. One of the earliest examples is the master thesis [28] by Larsson. Since then, both
the Modelica language and the translation software from CAD to Modelica advanced a
lot. One of the most recent publications in this field is the Ph.D. thesis [26] by Juhász.
Besides giving a broad overview of the state of the art, he describes the software he de-
veloped that enables a workflow to convert CAD assemblies in Pro/Engineer to Modelica
models that can be simulated using collision handling and accurate visualization.

Conversion from CAD data to Modelica models comprises the extraction of component
data from CAD and the extraction of relations between the components (constraints,
also known as mates) like joints. This data forms the basis for what is needed for a
mathematical model. For collision handling, the shapes of the components are needed too.
These shapes can also be used for better visualization of the system during the simulation,
because by default physical components in Modelica are visualized as primitive shapes.

Importing of CAD models is currently possible in commercial software like Dymola
and SimulationX.

5.4 Function Modeling to CAD

At the moment, no software is available that implements this part of the roadmap de-
picted in figure 5.1. However, there are some publications that present parts of the
solution for this case. One of the first articles about the route from FM to CAD was
published by Léon-Rovira [29]. He proposed to create change proposal rules in CAD as-
semblies, depending on "typical situations of insufficient or harmful actions or results"
in FMs. He also proposed to have the CAD program automatically generate alternative
designs based on these rules to give the user a quick overview of the consequences.

Bluntzer et al. [8], Gomes et al. [21] and Kratzer et al. [27] describe systems that
can assist in generating CAD models based on certain functional requirements. These
requirements are more specific than the notion of a function in TRIZ, because in TRIZ
there is only dealt with quality (what does a component do) whereas functional require-
ments also deal with quantities. These requirements are similar to the ones used in the
House of Quality (Hauser and Clausing [22]). This means that function data from FM
cannot be directly linked to the functional requirements that are the input for the systems
presented by Bluntzer et al., Gomes et al. and Kratzer et al.

Terninko [44] shows how QFD, TRIZ and Taguchi can be combined to find a robust
composition of functional requirements. However, this is a manual process and it needs
more information than FM alone can provide.
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5 Workflow of integrated components

Cascini [11] argues that functional modeling is still a good candidate for linking "the
conceptual design stage and detailed design". He gives arguments for this and also men-
tions the possibility of linking geometrical features to functions in digital CAD libraries,
assisting the user to perform routine design tasks.

5.5 Function Modeling to Modelica

From a FM diagram, users can be assisted in creating a Modelica model. First, the FM
system hierarchy can be extracted from the FM component tree to create a structure
of Modelica models. Second, users can edit the Modelica models from within the FM
program. Furthermore, they can be assisted in their choice of connector components.
Also, Modelica example models can be shown for principles like radiation absorption.

This part of the workflow is developed as part of the research for this thesis. The user
interaction with this workflow part is described in a general way in section 6.1 and as
part of a case study in section 8.3. Its implementation is discussed in section 6.3.3 and
more technical details are given in section B.2.

Since FM is a qualitative modeling approach, no data about quantities is available
from pure FMs only. There are two possible solutions for this. The FM software could be
extended to support quantitative functions (how much does component A heat component
B?) and component properties like mass etc. Furthermore CAD data could be used to
supply information about component properties (see section 5.3). These solutions are no
part of this research.

5.6 Modelica to Function Modeling

The results of Modelica simulation can be used in three ways. The results can be plotted
in a graph that is linked to a FM component, but more interesting are showing the results
over time using tooltips linked to components and having simulation results affecting the
visibility of components – thereby enabling the concept of Dynamic FM.

This part of the workflow is developed as part of the research for this thesis. The user
interaction with this workflow part is described in a general way in section 6.1 and as
part of a case study in section 8.4. Its implementation is discussed in section 6.3.3 and
more technical details are given in section B.2.

SimulationX can visualize the results of a Modelica simulation over time by modifying
the color of the connection between models. Users have to manually select a variable
to visualize. Similarly to this, functions in the FM could be used to visualize selected
simulation results by varying their color or the line thickness of their arrows.

Besides using Modelica simulation results in FMs, FMs could be generated out of Mod-
elica models since these models also have a hierarchy and, more important, connections
between submodels. These two last ideas are not implemented during this project, but
they are listed in section 9.2.
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5.7 Modelica optimization

5.7 Modelica optimization

The next step, after composing a mathematical model of a system (using analysis), is
optimizing it to have it perform as well as possible. For simple models this can usually
be done analytically, but when systems become more complex or nonlinear, numerical
optimization is a possible solution. [45] gives various examples of numerical optimization
types and present software that can be used to automatically optimize the parameters
of Modelica models. This software is now bundled with OpenModelica.

Besides OpenModelica, other Modelica software like Dymola can also perform opti-
mization.

5.7.1 Optimization objective selection

Each optimization process needs a goal to optimize to, an optimization objective. Usually
this objective is expressed in the form of a mathematical function that needs to be
minimized or maximized.

TRIZ provides two possible ways for assisting in formulating this function. The first
one is Target Object selection. During FM, the object upon which the system performs its
most important useful function(s) is called the target component (usually marked yellow).
Then it is also very likely that the useful function(s) performed upon this component
should perform as well as possible. By definition, every function changes some parameter
of the component it works on. Therefore, the software could show a list of variables of
the target component to choose from when composing the objective function for the
optimization process. The arrow in the workflow diagram is marked dashed because this
idea is not implemented yet.

The second, but less automated, way is through composition of a Main Parameter of
Value. This method can help in deciding the properties that a product needs to have in
order to be innovative and / or outstanding ([31]). These properties, for their part, can
then help in formulating an objective function.

5.7.2 Modelica optimization to CAD

The optimization results, consisting of a (set of) parameter(s), could be used in two ways.
The first use is for design guidelines, which serve as hints to the designer. The second
use is with parametric CAD models.

Design guidelines

If the input for the optimization program would be an optimization objective, optionally
together with a maximum tolerable error, the optimization program could generate a set
of feasible solution candidates. Each parameter could then have upper or lower limit,
needed to reach the objective, which could be presented as design guidelines to the
designer. Some experiments with showing design guidelines in SolidWorks were done as
a part of this project. They are presented in section 6.5.1.
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Parametric CAD models

Parametric CAD models are models of which (some of) the dimensions are not directly set
by numeric values, but by parameters or by mathematical functions depending on such
parameters. This way valid variants of components can be quickly generated. Almost
any of the commercial CAD packages provides support for such models.

Ansys Workbench provides such a link already. It can load parametric CAD models,
optimize their parameters for a certain goal (e.g. example mass reduction while ensuring
that stresses are not too high) and generate optimal geometries. [36] gives examples of
this workflow, but [17] shows that CAD models as used in industry might need prepara-
tion before they can be used this way.

In [21] a workflow for generating optimized CAD models is published.
If Modelica parameters would be coupled to the parameters of a CAD model, the CAD

model could be automatically updated using the results of the optimization process.

5.7.3 Modelica optimization results and TRIZ

When having more than one optimization objective, it can happen that a parameter needs
to be increased for one of the objectives and that the same parameter needs to be de-
creased for the other objective. It can also happen that a parameter needs to be changed
(increased or decreased), but that this is prevented by given boundary conditions. Such
situations are called contradictions, which can be solved by TRIZ theory.

The user would greatly benefit from having the optimization software detect such sit-
uations, because the software could then propose to start a TRIZ project to solve this
problem. It could also assist with the contradiction formulation and for the user it is con-
venient to have the software taking initiative. Since there is no software implementation
of this idea, yet, the arrow in the workflow diagram is drawn dashed.

5.8 Conclusions

A workflow linking CAD software, TRIZ, FM, Modelica and optimization is developed.
Existing, possible and developed interactions between the tools are described.

The steps going from CAD to FM and to Modelica already exist, as well as the steps
going from TRIZ to CAD, to FM and to optimization. Furthermore, the step going from
Modelica to optimization already exists.

The steps going from FM to optimization, from FM to CAD and from optimization to
Modelica do not exist yet.

The interaction steps between FM and Modelica as well as the step from optimization
to CAD are worked on during this project.
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6 Implementation

This chapter will discuss the implementation of ModelEvolution. First its usage is ex-
plained. After that, the architecture of software components and their interactions are
discussed. Furthermore, some general additions to the FM features (not per se related
to Modelica) and some experiments are presented.

6.1 Usage overview

This section will describe ModelEvolution from the user’s perspective. Since the general
FM functionality of the software is discussed already in [6] and [13], the usage of Modelica
features will be presented in more detail in this section.

In figure 7.1 the main window of ModelEvolution is shown. It shows the function
model diagram (A) and its component hierarchy tree (B).

Along the top edge of the window, a list of elements is shown to interact with the FM.
The leftmost button (C ) allows the user to clear the FM (including its accompanying
Modelica model) and to start from scratch. The change tracking functionality offered
by button D is discussed in section 6.4. Using dropdown-list E the target component
(marked yellow) of the FM can be selected. The next button (F ) offers function ranking
as explained in [13].

The last two interface elements deal with the functionality for Modelica support. But-
ton Simulate allows the engineer to simulate the Modelica model embedded in his FM.
The simulation settings (start and stop time, as well as the amount of timesteps) can be
customized, as shown in section 8.4.

While dragging the time slider H the simulation results are shown in tooltips next to
the FM components they belong to (see figure). Components are also made (in)visible
based on the value of their visibility variable. This allows to have the Dynamic FM
functionality, as published in [12]. Components are not hidden completely, but they are
made light gray. This was chosen to give a visual cue to the user that the component is
invisible now, but will be visible on some other timestep.

Every FM component has a Modelica model. The code for each of these models
can be accessed through the context menus of functions (figure 7.3a) or of components
(figure 7.10a). Through the context menu of components it is also possible to see the
simulation results visualized in a plot graph (figure 7.13).

The dialog window to edit the code (figure 7.10b) shows multiple textboxes where
code can be filled in: the code is split over the functions that the component performs,
and there is one extra textbox for miscellaneous code. Every code edit section related
to a function also has a connector proposal box (figure 7.9b) and an Examples button.
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The connector proposals are a list of Modelica connectors that might be suitable to
the physical domain that was selected (figure 7.9a) when adding the function. The
Examples button links to a dialog (figure 7.3b) that shows phenomena that can perform
the function, provided they are available in ModelEvolution’s database.

6.2 Modelica entities needing integration

In this section the entities of Modelica that need integration into ModelEvolution will be
discussed. Their implementation will be discussed in section 6.3.3.

6.2.1 Model parts

Modelica models usually exist from two parts. In the first part the components of which
the model is composed are listed. Variables, parameters and other models are all added
to this section as objects, since Modelica is an object-oriented language.

Variables and parameters contain the properties of a model, for example the tem-
perature of some fluid or the electrical resistance of a resistor. The difference between
variables and parameters is that variables are calculated depending on other variables or
parameters and that parameters are directly set by the user.

The second part of models consists of equations. Equations define the relations between
variables and parameters within a model. As opposed to most other computer programs,
in Modelica it does not matter which variable is on the left-hand side of the equation.
This is because in Modelica, equations are no assignations but real equations.

A special type of equations are connections. Connections are used to link the variables
or parameters of two separate models. These connections connect the connectors of two
models. Connectors are part of these models, like other components. The interesting
concept of these connectors is that they can resemble properties of real connectors and
that there can be multiple variables in one connector. For example, a standard Model-
ica.Electrical.Analog.Interfaces.Pin has both a current flowing through it and a voltage
potential at it. Similarly, a connection connecting two of such pins resembles a wire. In
terms of an equation, a connection sets the variables of its connectors to be equal.

Modelica models can contain annotations to store additional data. Not all of this
data is standardized (they can differ per Modelica implementation), but the Modelica
Language Specification does provide standards for, amongst others, annotations storing
the model appearance and the simulation settings.

6.2.2 Simulation

When using OpenModelica, the simulations are performed by the OpenModelica Com-
piler (OMC). The simulations can be performed according to settings given to OMC, like
the start and stop time, the precision, the solver type, the output format and others.

OMC can either output the simulation results as a file containing comma-separated
values (CSV), as an AutoCAD plot file or as a Matlab file. These results consist of the
values of all model variables for all simulation timesteps.
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6.3 Architecture

6.3 Architecture

This section will deal with the software architecture from a bird’s-eye view. A more de-
tailed discussion of the software architecture, including UML diagrams (diagrams showing
the source code structure), can be found in appendix B.
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Google Scholar

Scopus
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Figure 6.1: Architecture

6.3.1 Restructuring

At the beginning of this project ModelEvolution was directly integrated with SolidWorks.
For the research of this thesis, the Function Modeling module was made independent of
SolidWorks for three reasons. The first reason was having cleaner code because general
code could be clearly separated from CAD-specific code. The second reason was that
directly depending on SolidWorks required a restart of the software every time a code
change was made, which caused long developing and debugging cycle times. To start
the Function Modeling module a dummy CAD plugin was developed. Using this dummy
CAD plugin The third reason was that separating the FM code from the SolidWorks
add-in code allowed for possible development of plugins for other CAD software.

The separation of the Function Modeling module from the SolidWorks add-in was done
by introducing an interface class (see [30, ch. 13]). It is visualized in figure 6.1: the green
modules, that inherit from the ICadPlugin-interface class, can plug into the red Function
Modeling module. They are interchangeable.

6.3.2 Function Modeling module

After restructuring, the Function Modeling module contained all code for interacting
with the FM like displaying, creating, editing, saving, loading FMs. Also it contained
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the code for function proposing, etc. This code is not new and will therefore not be
discussed in detail.

Two groups of code were added to this: the code for the Modelica support (see sec-
tion 6.3.3) and the code for extra FM features (see section 6.4).

6.3.3 Modelica support

The Modelica support is implemented as follows. The Function Modeling module con-
nects to the OpenModelica Compiler (OMC) using CORBA ([15]) via the OMCCorba
module (see section B.3). Every action, that is performed on the internal Modelica model
(see section 6.1), is performed by OMC:

• adding, removing and changing code

• loading and saving code

• simulating the Modelica model

The commands to make OMC perform the right actions are encapsulated in functions
that can be called by other code in the Function Modeling module. These commands are
sent to OMC through OMCCorba. These functions are packaged in the ModelicaHandler
class of the Function Modeling module. The functions are for example called when
changing the FM (for every new FM component, a Modelica model is added to the
internal Modelica model of the system), when entering the code in a code editing dialog
or when clicking the Simulate button.

The FM software automatically creates an internal Modelica model of the system based
on the hierarchy of the FM components. Also, the Modelica structure is automatically
updated upon changes in the FM. After the Modelica structure is generated, it can be
filled through the Modelica code editor dialog of each component. There are two reasons
for this automatic Modelica model structure generation. The first reason is, that this
kind of automation makes it easier for the user because it solves a task for him. Guessing
by the software is not needed here (like with function proposing) – the FM structure and
Modelica structure match one to one. The second reason is that, by taking control over
the Modelica model structure creation, the software can decide the names for the models
inside it. This is needed for the extraction and visualization of the simulation results,
because they are linked to these model names.

Some simulation settings are fixed because they are either required for the program’s
workings (like the simulation results format which needs to be processed by the FM
software) or they are less often used (like the solver choice). The simulation settings that
are set by the user (start and stop time, as well as the amount of timesteps) are combined
with the fixed simulation settings when they are sent to OMC to start the simulation.

When the simulation is completed successfully, a file containing the simulation results
as comma-separated values (CSV) is produced. These results are read by the CSV reader
module published on [33] and stored in a DataTable in the SimulationResults class of the
Function Modeling module. It is needed to store these results in such a DataTable in
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memory because a computer cannot easily search for specific values in a CSV file. Re-
reading the CSV every time from the hard drive would take too much time resulting in
a slow experience for the user, while a DataTable is specifically meant for fast searching
of the data stored in it.

An example where specific data has to be found and loaded quickly is the time slider.
Every time the time slider is moved a bit, the simulation results corresponding to the
new position of the slider have to be loaded. Since 500 timesteps are a normal count for
a simulation and since the slider can be moved fast from left to right, it can happen that
500 data queries have to be performed in less than a second (the time it takes to move
the slider from left to right). Therefore, querying the data must be as fast as possible to
ensure a good performance when working with these results.

The simulation results can also be shown in a plot graph. Here the data in memory
can be used again without reloading it from the hard drive.

6.4 Function Modeling improvements

Besides work on the support for Modelica, work was done on improving the general FM
workflow. This work consists of the following new features:

• Change tracking. The differences between the initial FM (for example gained from
importing a CAD model) and an improved FM (for example the result of trimming)
are recorded and can be presented in a report

• More supported search engines. Espacenet and Scopus were added to support
respectively easy access to patents searches and literature searches

• Improved phenomena proposing. The user interface combines information about
the phenomenon, the supported search engines, required items to make the phe-
nomenon possible and a Modelica example

These features will be presented by a small demonstration about the heating of a cooking
pot.

First a FM of a cooking pot, that is heated by burning gas, is drawn. This is set as
the initial FM, to start the change recording (see figure 7.2a). When right-clicking a
function, a context menu for interaction with this function is shown (figure 7.3a). From
here the user can ask ModelEvolution to suggest phenomena that can perform the clicked
function.

Each phenomenon shows some information along with some examples (figure 7.3b).
Furthermore there are buttons to search for patents on Espacenet (figure 7.6) or to
search for literature on Scopus and Google Scholar. Also, a list of requirements can be
coupled to the phenomenon information (figure 7.4). In a future version, this list could
be used to propose the engineer to add the components on the list, when he decides to
use the respective phenomenon.

Modelica also has its place amongst the improvements. Every phenomenon has a
button to show a Modelica code example – provided that an example is available in
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the database. A button to easily copy-paste the code is available in the code dialog.
In figure 7.5 an example model is given for Radiation. These phenomena examples
can also be shown by clicking the Examples button from the Modelica code editor (see
figure 7.10b).

In figure 7.2b the updated FM is shown, where the burning gas is replaced by electro-
magnetic induction to heat the cooking pot. When clicking the Show changes-button (D
in figure 7.1) the initial FM (figure 7.2a) and the new FM are compared. If no initial
FM would have been set, an error message would have been shown.

The changes are shown in a change report (figure 7.7). It can be seen that the Elec-
tromagnetic induction was added and that the Burning gas was removed. The removed
and added functions are also shown in the report.

6.5 Experiments

Besides the features that ended up in the ModelEvolution prototype, some experiments
are done to put some more thought in some ideas or to try whether certain features are
useful or not. The most notable ones are discussed in this section.

6.5.1 Design guidelines in SolidWorks

Although Modelica optimization was not the focus area of this research, some effort was
put in the part of showing design guidelines in SolidWorks. This was done, because this
part of the workflow had not been researched before and it was interesting to visualize
this idea to widen the scope of this project.

A mockup is made of a software component where all available design guidelines are
presented to the user (see figure 6.2a). A mockup in this context is software that does
not contain all program logic to be fully functional, because its purpose is to visualize
certain principles. In this case the presented design guidelines are manually entered –
they are not the result of an actual optimization process because this would require extra
development of the OpenModelica optimization program.

The design guidelines are grouped per component and they are divided in minimum
values, optimal values and maximum values. The unit of the guidelines is shown as extra
information.

Upon selection of a design guideline in the guidelines overview of figure 6.2a, the
guideline is shown in SolidWorks in a callout that presents the information to the user.
This dialog type was chosen to present the guidelines because it can be visually connected
to the parts they belong to in SolidWorks.

6.5.2 Automated model connecting

While pursuing the goal of assisting engineers as much as possible, it was tried to auto-
mate connecting the Modelica models that share functions (the model of the component
that performs a function and the model of the component upon which this function is
performed).
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(a)

(b)

Figure 6.2: In the overview of design guidelines (a), the user can select the ones that are
visible in SolidWorks (b). The callout in this example shows that the motor
shaft should at least be able to provide a torque of 5Nm
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This was done by letting the user select a connector from the list of proposed connectors
(see section 6.1) or by letting the user enter a connector type manually. After giving the
connector a name, the connector would be added to both models of the components that
share the function and a connect statement would be added to the model of their parent
component.

There are two requirements for this feature to be helpful. First, the user should have a
clear overview of all connections in the system. A lacking overview might cause confusion
and the user might forget models parts are connected already and which models are
not. The second requirement is that the user still needs the possibility to manually add
connections. Otherwise the user might feel constrained to what the software limits him
to do.
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7 Software screenshots

This chapter contains screenshots of various workflows within ModelEvolution. They are
grouped here to offer a good overview of its usage steps in a central place.

7.1 Main window

A

B

C D E F G H

Figure 7.1: Main window
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7.2 Function modeling improvements

(a)

(b)

Figure 7.2: The initial FM when starting change tracking (a) and the updated FM using
a different working principle (b)
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(a) (b)

Figure 7.3: Context menu (a) and phenomena proposals (b) for the function Heats

Figure 7.4: Requirements for Electromagnetic induction

Figure 7.5: Modelica code example for the phenomenon Radiation
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Figure 7.6: Espacenet patent search results for Electromagnetic induction combined with
Heats

Figure 7.7: Change report

36



7.3 Case study

7.3 Case study

(a) (b)

Figure 7.8: Function model diagram (a) of the RC-car and corresponding Modelica
model (b)
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(a)

(b)

Figure 7.9: ModelEvolution proposes the function Rotates and the domain Mechanical
when the component Motor is selected (a). The selected domain is used to
propose a list of possible Modelica connector models (b)
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(a)

(b)

Figure 7.10: Right-clicking on a component allows the user to enter the Modelica code for
this component (a). The code for the Transmission component is entered (b)

(a) (b)

Figure 7.11: The simulation options dialog (b) can be reached by the menu built into the
Simulate-button (a)
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(a)

Figure 7.12: While dragging the time slider, the simulation results are shown in tooltips
and the components are visible depending on the value of their visibility
variable. The difference between not filtering the results (a) and filtering
the results (b) is clearly visible. The difference between invisible (b) and
visible (c) components is also shown
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(b)

Figure 7.12: While dragging the time slider, the simulation results are shown in tooltips
and the components are visible depending on the value of their visibility
variable. The difference between not filtering the results (a) and filtering
the results (b) is clearly visible. The difference between invisible (b) and
visible (c) components is also shown
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(c)

Figure 7.12: While dragging the time slider, the simulation results are shown in tooltips
and the components are visible depending on the value of their visibility
variable. The difference between not filtering the results (a) and filtering
the results (b) is clearly visible. The difference between invisible (b) and
visible (c) components is also shown
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Figure 7.13: Graph of simulation results for the Chassis component
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8 Case study

8.1 Introduction

To demonstrate the workings of the software, a case study concerning an RC-car (a toy)
is presented (shown in figure 8.1). This project focuses on the integration of FM and
Modelica. Therefore, the case study concerns of a function model, that is extended with
a Modelica model.

Figure 8.1: Tamiya item #58255

The model will cover the acceleration and deceleration of the RC-car over a relatively
short time. First the FM was created in ModelEvolution and the Modelica model was
created in OMEdit (part of OpenModelica) for easy editing of the details. After that
the Modelica model was merged into the FM. This will be discussed in section 8.3. The
resulting model can be seen in figure 7.8b. The assumptions done to construct this model
are discussed in section 8.2. Several speed sensors and unit conversion blocks are included
in the Modelica model, but these will not be discussed further.

Finally the model was simulated, which will be discussed in section 8.3.

8.2 Modeling assumptions

During the modeling, some assumptions were made to make an abstraction of the real car.
These assumptions are discussed below. The data comes from three different sources: the
specifications [43] of a RC-car kit from Tamiya, an extensive review [38] of a RC-car with
a comparable frame and the specifications [37] of the RS-540SH motor that is used in
these cars by default. Because this case study is more aimed at showing the integration of

45



8 Case study

Modelica modeling and function modeling, the actual values are not of vital importance.
However, some effort is done to acquire realistic values.

The mechanical speed controller (shown as MCS1 in the Modelica model) is modeled
as a resistor with a variable resistance. The model can take a value between 0.0 and
1.0 as input where the first value marks a stop and the second value marks full speed.
For 0.2 <= control <= 0.5 the resistance is 0.4Ω. For 0.55 <= control <= 0.75 the
resistance is 0.2Ω. For 0.8 <= control <= 1.0 the resistance is 1 · 10−5Ω. For all other
values the resistance is 1 · 105Ω. This approach of using a variable resistor is chosen
because more realistic models using switches (to open the circuit like the real controller
does) did not work in OpenModelica.

The receiver, modeled as a linear profile, is used to control the mechanical speed
controller. It is chosen to take 0.1s to rise from 0.0 to 1.0, then to have its value remain
1.0 for 3.0s and after that it takes 0.3s for its value to return to 0.0 again.

Because the model only covers a short time, decharging effects of the battery are not
taken into account. Therefore, the battery can be modeled as a constant voltage source.
According to [38] the voltage is 7.2V . To make it a valid Modelica model, the Battery1
model also contains a "Ground" component.

The motor is modeled in a similar way to the approach explained in [35]. However,
the influence of the inductor is neglected since it is assumed to be small compared to the
mechanical (rotational and translational) inertia of the rest of the system. The motor
properties are calculated from the motor specifications [37]. The motor constant km =
2.35 ·10−3Nm/A is calculated using data from the most efficient torque point (I = 13.0A
and T = 30.6 ·10−3Nm at 197400rpm). The internal resistance Rinternal = 1.796 ·10−1Ω
is calculated using the same data as follows: the voltage-drop over the motor is assumed
to be equal to the sum of the back-emf voltage and the voltage drop over the internal
resistance. The back-emf voltage of 4.87V is given by Uemf = k ∗ ω (ω in rad/s). The
total voltage drop is 7.2V , resulting in a voltage drop of 2.33V over the internal resistance.
Using the given current, the internal resistance can be calculated by Rinternal = Ures/I.

The Transmission1 model is composed of an IdealGear component and a BearingFric-
tion component. According to [43] the transmission ratio is 7,96:1, so i = 7.96. The
friction in the transmission is lumped together with the other friction components.

The BearingFriction component in Transmission1 is added to account for the friction
of the transmission, the bearings, the wheels and the air drag. This friction is empirically
determined by setting the friction torque in such a way that the maximum speed of the
car is around 20km/h. It was found that the needed friction torque to limit the maximum
speed is around 0.6Nm. Since the friction is non-linear (at a standstill the friction of the
rotating parts is a bit higher than when it just starts running and after that the friction
is assumed to increase quadratically) a table is used to friction torque values for various
angular velocities.

According to [43] the mass of the total car is m = 1.076kg. This accounts for the
translational inertia of the car.

The rotational inertia of all components (of the motor, the transmission and the wheels)
together is lumped as one inertia component, but the value of this inertia component
turned out to be negligible compared to the translational inertia of the car. Therefore it
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is omitted from the model.
All wheels together are modeled as one wheel (Tire1 in the Modelica model). This is

allowed because it only transforms the torque and rotational angle of the transmission
to a force and displacement. The tire diameter is set to d = 65 ·10−3m according to [43].
The wheel in the FM moves both the chassis and the road. This is because the axle of
the wheel moves the chassis forward and because the wheel pushes the road backward.

8.3 Modeling

First the FM is modeled in ModelEvolution. The software assists in selecting the function
and domain by pre-selecting probable candidates. An example of this can be seen in
figure 7.9a. The selected domain is used later on to give hints for some possible Modelica
connector models (figure 7.9b).

In the FM some functions are omitted because they do not influence the acceleration
/ deceleration behavior of the car and because they would clutter the model. Examples
of these functions are all the holds-functions like Chassis holds Battery, Chassis holds
motor, etc. Also, Battery powers Receiver is not included.

The implemented way of entering Modelica code (only text-based modeling separated
over components and functions) works well enough for small, simple models, but it turned
out that it does not work so well for larger, more complex models. The splitting of
Modelica code over functions was meant to make the entering of models more structured,
but actually it makes it confusing to enter models for components performing functions
that are interdependent. Furthermore, it is hard to keep an overview of the total model
and its connections due the lack of graphical editing results.

Therefore the basic Modelica model structure, automatically generated by the FM
software (based on the FM structure), was filled in the OpenModelica Editor (figure 7.8b)
for convenience reasons and entered back in the FM (figure 7.10).

8.4 Simulation

After completion of the modeling process, the model was simulated. The simulation
options were set using figure 7.11 to a time-frame of six seconds. 500 timesteps were
used to ensure a detailed simulation. After clicking the Simulate-button, the time slider
becomes available. When sliding, tooltips above each component showed the calculated
values of each of the components’ variables. This can be seen in figure 7.12.

Here a problem showed up: The amount of internal variables in the more complex
Modelica models causes the tooltips to fill the screen. This happens when models exist
of multiple components, of which some of them have subcomponents. Modelica exports
all internal variables, not only the top-level ones.

To show how it looks when only useful variables are shown, the results file was manually
filtered before allowing ModelEvolution to read the results. This is shown in figure 7.12b.
A possible way of solving this could be showing only the variables of the connectors,
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thereby hiding all internal variables. However, the consequences and results of this
possible solutions are not investigated.

While moving the time slider, the visibility of the components is set depending on
their visibility variable. This variable has to be defined manually depending on what the
engineer thinks is necessary for the component to perform its function(s). In figure 7.12
can be seen that the Battery, MCS and Motor do not perform their function anymore
because the Receiver already set the control variable of the MCS to 0.0. To visualise
that, the visibility of the Battery, MCS and Motor was made dependent on the electrical
current in their models. However, the Transmission still performs a function, because
there is a friction component inside the model which exerts a decelerating torque upon
the Wheels.

Besides the dynamic FM showing the simulation results, the results can also be plotted
in graphs (accessible through the context menu of each component, see figure 7.10a). In
figure 7.13 the graph for the Chassis component is shown. When hovering over the results,
the value at the location of the mouse cursor is shown using a tooltip. The reason for the
distance being negative is that the Tire1 model is connected to the right-hand connector
of the Chassis1 model. This was done for layout reasons.

8.5 Case study conclusions

The modeling and simulation of an RC-car, a larger and more complex system than the
small test models used during development, showed that it is possible to use the developed
workflow for combining a FM and Modelica model for a real-life system. However, during
the case study some shortcomings appeared that need to be taken care of before the
software is suitable for general use. These shortcomings mainly consist of the way how
Modelica models have to be edited and how the simulation results are displayed. It would
be easier if the components’ Modelica code would not be separated over functions and if
simulation results could be filtered before displaying them.

The reason that the overflow of simulation results during visualization did not show
up during development, was that simple models with a small amount of variables were
used for quick purposeful testing. Every test was created with a special aim in mind -
for example one test for the storage of code in a component, one test for the dynamic
hiding and showing of components, etc.

As described before, two points were tailored for this case study. The first one is that,
instead of filling the Modelica model details using the text editing dialog of the FM
software, the OpenModelica Editor was used to edit the generated model structure in a
graphical way. However, the basic Modelica model structure is generated automatically
from the FM by ModelEvolution. The second tailored point is the manual filtering of
simulation results, to show the difference between the filtered and non-filtered situation.

It is convenient to have access to the Modelica code linked to FM components. How-
ever, the current implementation of the code editing itself lacks a lot of conveniences that
more mature editors offer, like drag-and-drop support and visual connecting of compo-
nents. This visual way of editing is not implemented because it would take a lot of time
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to reimplement the already existing features from other software. Instead there is chosen
to focus on other integration points between FM and Modelica, like Dynamic FM and
the visualization of the simulation results.

It would require usability research to investigate whether the proposing of connectors
is a valuable addition. It is something that sets it apart from other editors, but more
experienced people might not need it.
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9.1 Conclusions

This research has three outcomes:

• a workflow for integration possibilities of TRIZ, CAD software, FM software and
Modelica (Optimization). This workflow has been commented on and is backed by
a thorough literature study

• a new way of working with FMs of changing system structures (Dynamic FM)

• a software prototype demonstrating the interaction between FM and Modelica

The easy access to the Modelica code and simulation graphs through the context menu
of components in the FM are nice to have, but the input method for the code itself needs
some work. Besides lack of support for graphical editing of the Modelica models, it
is hard to maintain a clear overview during connecting the models and when working
with Modelica models that have more layers than the FM. However, the structure of the
internal Modelica model that is updated upon changes in the FM is practical. Graphical
editing of Modelica models is not implemented because it would take too much time to
reimplement functionality that other programs already offer.

Dynamic FM and the visualization of results as tooltips linked to the FM components
are nice to have. They give the user more insight into the transient behavior of his model.
Besides that, they set the software apart since there is no other software at the moment
that does this. However, the filtering of results still needs work to prevent cluttering
of the interface (regarding the tooltips and the plot graphs). Having too many visible
results at the same time literally fills the screen.

To achieve integration of FM and Modelica, it would be a simpler solution to generate
the Modelica model from the FM structure. This model could then be opened, edited
and simulated in a dedicated Modelica editor. Finally the results could then be imported
in the FM software. This way, Dynamic FM and the visualization of simulation results
are still supported, but editing of Modelica code through the FM components is lost
then. Connector proposing based on the functions’ domains is lost then, too (unless it
would be supplied as a comment in the exported Modelica model).

Other reasons for not choosing this easier approach, are that there was strived for
as much independence of external programs as possible and that it was interesting to
experiment with new ways of editing Modelica code (like splitting code over functions).
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9.2 Recommendations

Although a lot of ideas were worked out, not all ideas for new features and not all
experiment results ended up in the software prototype. This is because they were not
either not within the scope of this project or were not achievable given the situation.
However, they could be implemented in other projects to improve the software even
more. This section lists the ideas for future improvements.

The workflow shown in figure 5.1 shows some dashed arrows – interactions that have
not been implemented yet. To complete the interactions between the components listed
in this workflow diagram, research should be done into creation of CAD models from
FMs, contradiction detection during Modelica optimization and usage of the FM target
component to assist in formulating an optimization objective.

During this project an experiment was done regarding the presentation of design guide-
lines and their visualization in SolidWorks. However, more research is needed to automate
the derivation of design guidelines from the optimization results. Also, the visualization
of design guidelines like done in the experiment might not be the only or best way to do
this. More research is needed here.

The automatic connection of models, that belong to components sharing a function,
needs a good insight of the user into the connections. Therefore it is recommended to
implement this functionality after at least implementing graphical displaying (or even
better, editing) of the Modelica models.

Filtering of the simulation results is a point that needs to be implemented to make the
software usable when working with larger models. A simple way of doing this would be
letting the user select which variables he wants to display. This is already done in other
software. However, it is recommended to investigate whether the software can assist in
filtering these results.

At the moment, the interaction matrix is only used while generating the initial function
model. It was implemented like this, because it was assumed that the interaction matrix
is only used at this working stage. However, it could be useful to be able to switch back
and forth between the function model and the interaction matrix. For example going
back to the interaction matrix would allow for having a quick overview of the interactions
between components, especially when working with a multi-layer function model.

Another improvement would be the implementation of a client / server model. This
way multiple users could work on the same function model at the same time, not needing
to send their models back and forth, not needing to wait for each other’s updates and
always having access to the latest version. In the past, several projects like [42] and [34]
aimed to deliver a client-server model to allow multiple users to work simultaneous with
one OpenModelica Compiler instance. A similar goal could be set for the FM part of
this software.

Dynamic FM was introduced to better combine the various states of a system in one
FM. Modelica provides support for modeling of physical dynamic systems, including
support for thermodynamic models and models containing fluids. The software could be
improved to detect whether there would be phase changes in the fluids in the Modelica
models, and show these phase changes in the FM. If this turns out to be impossible due
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to lack of Modelica support for phase change detection, the software could approach the
problem in a different way by detecting the usage of fluid models in Modelica and hinting
the user to model the phase changes manually.

One of the shortcomings of FM is, that users might be inclined to use ambiguous or
invalid function descriptions since they are formulated using natural language [9]. An
example of an invalid function is to protect, since it does not change a parameter of
the object it works on. The software could help the users by notifying them when they
try to define such a function and by giving them information on how functions can be
formulated better.

In section 6.4 an idea is given of having the software automatically add the items, listed
as requirements for a certain phenomenon, to the FM upon choosing of that phenomenon.
This could help a user to faster update his FM after choosing for a certain implementation.

With regard to Modelica, two improvements could be named (as discussed in sec-
tion 5.6). The first one is using the arrow thickness or color in FMs to visualize the
value of a Modelica variable from the simulation results. It is already implemented in
SimulationX, but would be a valuable addition to have it in FM as well. The second
one is generating FMs from Modelica models by using information from their model hi-
erarchy and interactions between submodels. Information about the technical domain
of interactions could be derived from their interaction connector types. This automated
generation could help engineers, who already have a Modelica model, with quickly cre-
ating a FM from it. However, it also needs to be checked whether there is a demand for
this workflow.

During this project, a case study is done to demonstrate the implemented function-
ality and to verify the software’s capabilities of working with larger and more detailed
models. However, the interaction with the software by a large group of users needs to
be done researched to verify the usability of the developed workflow steps and their im-
plementation. Another research goal can be the difference in task completion time when
comparing the non-integrated and integrated software.
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A Function model creation

This chapter shows the creation steps that lead to a FM. This can done in an automated
way, like ModelEvolution provides, or by hand. In this example the valve-cam assembly
(shown in figure A.1) from the SolidWorks 2011 Motion Studies tutorial is used.

First an interaction matrix (see figure A.2) is composed. This is a symmetric matrix
where all components of the system are listed along both axes. A check is placed for
each interaction. ModelEvolution can extract the interactions from the CAD model and
thereby automatically fill the interaction matrix. The user can make changes afterwards.

For each interaction in the matrix, a function needs to be defined. This can be a
list of functions on paper, but ModelEvolution helps the user by proposing probable
functions (see figure A.3) that the user can change to his liking. Additional information
like whether or not the function is harmful can be added as extra information.

When all interactions are defined as functions, a function model diagram (figure A.4)
can be drawn to visualize them. The components are drawn as blocks and the arrows
connecting them represent the functions.

Figure A.1: Valve-cam assembly from the SolidWorks 2011 Motion Studies tutorial
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A Function model creation

Figure A.2: Interaction matrix

Figure A.3: Function definition
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Figure A.4: Function model diagram
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B Software architecture

B.1 Restructuring

Before the start of this research, the research only focused on integration with Solid-
Works (see [6] and [13]). Therefore, ModelEvolution was only integrated with SolidWorks
at the beginning of this research. In order to allow for well-structured integration with
several CAD programs, including a dummy cad plugin for testing reasons, an abstraction
layer was built between SolidWorks and the software. This was done by introducing an
interface class (see [30, ch. 13]) called ICadPlugin. The principle of using an interface
class was chosen because CAD plugins need multiple inheritance – they need to inherit
of both ICadPlugin and the interface class provided by the CAD software they are meant
for, in the case of SolidWorks this interface is called ISwAddin (see section B.4).

The abstraction process resulted in having separate software components: a generic
FM module and a CAD plugin written specifically for SolidWorks. This SolidWorks
add-in is discussed in section B.4.

The FM module calls functions of this ICadPlugin interface class and without knowing
about the actual implementation in the CAD plugins. Plugins for every CAD suite can be
developed by inheriting from the interface class and implementing its virtual functions.
This is visualized in figure 6.1 by means of the green software components that can fit
into the red FM module.

Before the abstraction, the FM software depended on SolidWorks to be started, because
it was developed as a SolidWorks plugin. However, SolidWorks was not needed during
this project. Therefore, SolidWorks became a burden which needed to be restarted every
time a code change was made. The abstraction allowed to develop a dummy cad plugin
– a standalone program of which the only purpose is to start the FM software. Using
this approach drastically sped up the development and debugging.

B.2 Function Modeling module

After the restructuring discussed in section B.1, the work of adding support for Modelica
to the Function Modeling module was started.

Figure B.1 shows the code structure of this module - it is the module that is responsible
for all operations on the FM, that holds a database needed for the proposing functionality.
For the sake of legibility, only the most important relations between classes are drawn.

The plugin code is divided over several parts. AddinCore contains the code neccessary
to interface with CAD add-ins and other programs. Furthermore it contains code to start
the module.
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B Software architecture

The FM logic is located in FMCore. This part contains all code for drawing the FM
and interacting with it. The proposing features, the change tracking and function ranking
code are also located here.

CustomControls is not directly related to FM functionality, but contains some custom
user interface elements, like the special button type that is used for the Simulate-button.
This button has a special clickable section to allow editing of the simulation settings
(figure 7.11).

B.2.1 Modelica integration in the Function Modeling module

The most important newly added code of this module resides in the Modelica part.
The ModelicaHandler -class contains all functions to perform actions using OMC. These
functions exist of predefined commands that can be sent to OMC via the OMCCorba
module. It has a SimulationResults object into which simulation results are loaded via
the CSVReader module. The SimulationResults class has a DataTable object where the
results are stored. This DataTable allows fast querying of the data, which is not directly
possible with a CSV file.

The user can edit components’ Modelica code through the ModelicaClassEditor dia-
log. This dialog can contain multiple ModelicaFunctionCodeControl sections – one code
editing section per function. This dialog can be seen in figure 7.10b.

EditSimulationOptions is the dialog that allows the user to make settings for the
simulation (shown in figure 7.11b). These settings are sent to the ModelicaHandler class
using an object of the ModelicaSimulationOptions class.

The ModelicaSimulationGraph class contains the dialog to present the simulation re-
sults of a component in the FM as a graph (shown in figure 7.13). Besides the graph
dialog, the simulation results are shown in the FM diagram using tooltips above the FM
components they belong to. These tooltips are drawn by the FunctionDiagram class. It
reads the data from the DataTable in the SimulationOptions object of ModelicaHandler.
Everytime the time slider of the FM diagram window is moved, the tooltips are updated
and shown for a few seconds.

B.3 Connection to OpenModelica

To perform all Modelica-related tasks, the Function Modeling module of ModelEvolution
connects to the OpenModelica compiler (OMC). This connection is done using CORBA
technology ([15]), which allows computer processes to communicate with each other us-
ing network connections (this means that it is possible to have processes of separate
computers communicating with each other, but this is not necessary).

The OMC can be started as a CORBA server, after which other programs can connect
to it. The communication logic for connecting to OMC was packaged in a separate DLL
file called OMCCorba for easy testing of its functionality. The UML-diagram of the
OMCCorba module is shown in figure B.2. OMCCorba uses IIOP.NET ([47]), a CORBA
implementation for the .NET programming platform. The OMCCorba DLL provides a
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FunctionModeling

CSVReader
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ICadPlugin
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ComponentForm FunctionForm
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FunctionModelChanges

FunctionProposalEditor
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ModelicaFunctionCodeControl

EditSimulationOptions

ModelicaSimulationOptions

ModelicaSimulationGraph

Figure B.1: UML-diagram of FunctionModeling module
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function that other programs can use to send commands to OMC and read the response
to these commands. This function is SendExpression(string expression).

Besides the transmission of commands and data, the DLL takes care of starting OMC
when it is not running yet and closing it when the main program is shut down.

The software project by [42] was taken as an example for the implementation of a
CORBA connection with OMC.

OMCCorba

IIOP-NET OMC

1

1

OMCManager

static public string SendExpression(string expression)
static public string SendClass(string model)
static private void StartOMC()
static private void StopOMC()
static public string cleanExpression(string expression)

OMCConnection
CORBA calls

Figure B.2: UML-diagram of OMCCorba module

B.4 SolidWorks add-in

The SolidWorks add-in can start the FM module and provide it with the necessary infor-
mation about the loaded assembly and interactions within this assembly. Its architecture
is shown in figure B.3.

In order to work as a SolidWorks add-in, it needs to inherit from the ISwAddin interface
which is provided by the SolidWorks API. For the interaction with the FM module it
inherits from the ICadPlugin interface.

The SolidWorks add-in has a few classes that assist in providing the needed functional-
ity. The logic for providing information about the assembly resides in the AddinToolbox.
The code for responding to events in SolidWorks (like adding and removing of a part,
adding a new mate, etc) is located in CADEventHandler. bitmaphandler provides func-
tionality for converting bitmap icons to a format that SolidWorks can use to draw icons
on buttons.

Since the interaction with SolidWorks is out of the scope of this research, there will
not be elaborated on more details of this component.
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Figure B.3: UML-diagram of SolidWorks add-in
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